

Preparation of research data for the standardization of herbal medicines in chemistry – physics

ภญ. จิรานุช แจ่มทวีกุล สำนักยาและวัตถุเสพติด กรมวิทยาศาสตร์การแพทย์

4 สิงหาคม 2560

 Importance of quality control in chemistryphysics.

 Requirements for the standardization of herbal medicines.

Importance of quality control in chemistry-physics.

The standard used to judge the quality of herbal medicines

Reference pharmacopoeia

Thai Herbal Pharmacopoeia

A guide for quality control

Thai Herbal Pharmacopoeia, THP

:70 Monographs

Requirements for the standardization of herbal medicines.

Need to know the details:

- Local name, English name, Scientific name, Synonyms
- General characteristics of herbs
- Distribution
- Part used
- Constituent

Test

- Identification
- Foreign matter : NMT...
- Ethanol-soluble extractive : NLT...
- Water-soluble extractive : NLT...
- Total ash : NMT...
- Acid-insoluble ash : NMT...
- Loss on drying : NMT, Temp.
- Water: NMT..., Azeotropic Distillation Method
- Volatile oil : NLT...

Identification

- Chemical test
- Thin layer Chromatography

Chemical test

Color test

Color Time

Precipitate Color Time

Don't use many chemical reagents, hazard

Reagent: manufacturer, batch

Thin layer Chromatography (Appendix 3.1)

Stationary phase

TLC plate (HPTLC plate): type of absorbent, plate, thickness, size, manufacturer, batch, pretreatment

Mobile phase: 2 systems, How to saturate Don't use many chemical reagents, hazard, controlled reagent

Standard: Reference standard and COA - BDN

Extract for use: method, Ident., reason -> BDN

(repeat n≥10)

Marker: Similar R_f value

Thin layer Chromatography

(Appendix 3.1)

Solution preparation: How to prepare

Apply: Volume of apply,

Band (10-20 mm for TLC, 5-10 mm for

HPTLC), every samples and NLT 3 plates

Distance: 15 cm or ? cm

Detection: Under 254 nm, 366 nm, spraying reagent, heat or not, temperature and time

Identification: TLC fingerprint

Photograph : Raw data (Tiff or Bipmap) resolution ≥600 dpi

Table of hR_f value

THP SUPPLEMENT 2011

Table 1 hR_f Values of Components in the Extract of the Leaves of Clinacanthus nutans (Burm. f.) Lindau

Band	hR _f Value	Detection			
		UV 254	UV 366	Phosphomolybdic Acid TS	NP/PEG TS and UV 366
2	14-17	-	pale blue	-	pale blue
3	20-24	weak quenching	-	-	-
4	24-30	_	-	pale greyish purple	yellowish green
5	30-37	weak quenching	-	yellowish brown	bluish green
6	40-44	-	-	_	yellowish green
7	44-47	weak quenching	-	pale yellowish brown	-
8	47-51	weak quenching	red	green	red
9	51-53	quenching	red	dark green	red
10	53-57	-	bright blue	pale green	bright blue
11	58-61	weak quenching	-	pale greyish purple	-
12	62-66		blue	-	pale blue
13	66-70	quenching	-	dark purple	pale blue
M	70-73	_	-	brown	-
15	75-80	quenching	red	purple	pinkish red
16	80-86	quenching	red		pinkish rea
		1 0			

Loss on drying. Not more than 12.0 per sent w/w after drying at 105° to constant weight (Appendix 4.15).

Foreign matter Not more than 2.0 per cent w/w (Appendix 7.2).

Acid-insoluble ash Not more than 1.0 per cent w/w (Appendix 7.6).

Total ash Not more than 18.0 per cent w/w (Appendix 7.7).

Ethanol (50 per cent)-soluble extractive Not less than 23.0 per cent w/w (Appendix 7.12).

Water-soluble extractive Not less than 28.0 per cent w/w (Appendix 7.12).

Foreign matter

(Appendix 7.2)

Part used: Known

Foreign organs: other parts

Foreign elements: other herbs, insect, soil

Use: 500 g for roots, bark, stem

250 g for leaves, flowers, seeds, fruits

50 g for sliced herb

Ash

(Appendix 7.6)

Total ash

Temperature: NMT 450 °C

Acid insoluble ash

Temperature: about 500 °C

Use: powder 2-3 g, accurately weight, readability 0.0001g

Ignite to constant weight: two consecutive weighings of the ash do not differ by more than 0.5 mg/g (second weighing after ignite for 15 min)

Extractives

(Appendix 7.12, 7.12H)

Water-soluble extractive: glucose, mucilage, pectin

Ethanol-soluble extractive : ketone, alcohol, calcium oxalate

Chloroform-soluble extractive: terpenes, sesquiterpenes

Hexane-soluble extractive: antraquinones, resin, glycosides

Extractives

(Appendix 7.12, 7.12H)

Use: powder 2-5 g, accurately weight, readability 0.0001q

Dry to constant weight: two consecutive weighings of the extract do not differ by more than 2.5 mg/g (second weighing after dry for 1 hour)

Temperature: 105 °C

Loss on drying

(Appendix 4.15)

Temperature: 100-105 °C

Time :....or until constant weight

Use: powder 2-5 g, accurately weight, readability 0.0001g

Dry to constant weight: two consecutive weighings of the extract do not differ by more than 2.5 mg/g (second weighing after dry for 1 hour)

Water content (Appendix 4.12)

Azeotropic Distillation Method

Azeotropic Distillation Method

Apparatus The apparatus (see figure) consists of a glass flask (A) connected by a tube (D) to a cylindrical tube (B) fitted with a graduated receiving tube (E) and a reflux condenser (C). The receiving tube (E) is graduated in 0.1-ml subdivisions so that the error of reading is not greater than 0.05 ml. The source of heat is preferably an electric heater with rheostat control or an oil-bath. The upper portion of the flask and the connection tube may be insulated with asbestos.

Weight
Volume of water (2-3ml)
Gentle heat 15 min
Toluene begins to boil,
Rate of Distillation
(2drops/sec)
water has distilled over
(4drops/sec)
Calibrated glassware

Volatile oil content

(Appendix 7.3H)

Fig. 1

Fig. 2

Weight Size Volume of distillation liquid, xylene Temp.(130-150 C) **Rate of Distillation** Time (5hr) **Calibrated glassware**

Quatitative Determination

Size of powder drug: Sieve No.

Calibrated instrument

Method: method validation (ICH guideline or guideline as announced by the Minister)

Calculation: as is and on dried basis/on anhydrous basis

Quatitative Determination

Standard: Reference standard and COA - BDN

Extract for use: method, Ident., reason, purity -BDN

(repeat n≥10)

Conclusion

Raw data: weight, repeat, picture, temperature, time

: method validation Assay

Standard: Standard and COA, manufacture, batch/lot

Extract for use (method, identification, reason)

*** repeat NLT 10

Reagent: Don't use many chemical reagents, hazard, controlled

reagents

Bureau of Drug and Narcotic

Thank you for your attention.